1.声学与物理学
声学是物理学的一个重要分支,也是物理学中最古老的分支之一。在物理学的发展中,声学有着卓越的贡献。首先,声学所研究的机械振动及其在各种物质中传播的属性是物理学的本质之一。Rayleigh于19世纪末最早提出声波动理论,对后来的各种波动传播理论的发展有重要作用。
2.超声在工业上的应用
超声检测和无损评价
多浦乐便携式全聚焦相控阵超声检测仪
超声波由于能穿透电磁波、光波等无法穿透的物质,同时又能在两种物质(两者的密度和声速显著不同)的界面上反射。如果某种物质内部存在不均匀性,如气泡、裂痕、夹杂、疏松、位错或脱粘等缺陷,就会引起超声波的反射。因此,利用超声波能探测物质内部的结构(缺陷和不均匀分布)等。目前,利用相控阵超声、全聚焦技术的超声探伤仪可以对各种机械零部件,包括航空、航天飞机机壳及发动机零部件等进行无损检测,也可用于对装载核反应物质的容器、输油和输气管道以及锅炉等压力容器进行无损检测等。
多浦乐超声显微镜
另一方面,超声显微镜可用于微米量级的微观结构或缺陷的研究和探查,可以研究材料和微型器件的介观特性和结构。近年来,在电子显微镜、隧道显微镜及原子力显微镜基础上发展的电子声显微镜、隧道声显微镜及调制力显微镜等新型显微镜成像系统,更将声成像分辨率提高到纳米量级,从而有可能在原子尺度的量级上研究材料的表面和亚表面结构。
大功率超声的工业应用
利用大功率超声波作用于物质,可改变物质的性质和状态。例如,在含有烟雾粒子和灰尘的气体中发射大功率超声,不同尺度的粒子振动速度不同,则互相碰撞,从而可加速粒子的凝聚;在液体中发射大功率超声,会在液体中产生“空化现象”,即波动引起的稀疏过程使液体产生空泡,压缩过程使空泡破碎而在周围产生机械冲力。从而可实现清洗、乳化、脱气以及使固体粒子悬浮、或使高分子分解和聚合,促进化学反应等;在固体中发射大功率超声,可用于粉碎、研磨,切割、加工和焊接等等。
3.光声学与激光超声
当强度调制的激光束照射于物质(包括气体、液体和固体)时,物质吸收光能而产生热,周期性热流使周围的介质热胀冷缩而激发声波,这种将光能转化为声能的现象称为光声效应。其中间过程为热能的转换和传递的过程,因此亦称热波。
由于光声效应与物质的光学、热学、力学等性质以及几何结构有关,因此测定光声信号可以检测物质的宏观、介观乃至微观特性和结构等。利用光声效应研究、分析和检测物质的方法即为光声热波技术。通常有光声谱仪用于成分和能级结构分析,以及光声显微镜用于空间结构分布的检测。
随着脉冲激光技术的发展,利用脉冲激光激发超声波,便成为非接触式激发超声波的有效手段。为此相应地发展了多种非接触式检测振动和位移的新方法,其中最主要的要属光干涉法。将光激发和光检测相结合形成非接触式激发和检测声波的全光学方法,适用于在极端环境下(高温、高压、腐蚀及放射性等)对材料和设备进行分析和测试。
4.声电子技术
70年代初期,声表面波器件问世,它的优点是对换能器的形状可以任意设计,因此为器件的性能改进提供了极为方便的途径。其次是器件的制作只是利用与半导体集成电路工艺极为类似的生产程序,因此重复性好,性能稳定,体积更小型化,并可实现批量生产,为声电子器件开拓了广阔的应用领域,发展迅速。声表面波器件可对信号完成传递、延迟、滤波、展宽、压缩、移频、调制、解调、开关、放大、编码、解码、卷积相关、频谱分析、富氏变换及其他数学变换等信号处理功能。声表面波器件广泛应用于通讯、雷达、电子对抗、电视广播、光电子学以及传感控制等领域。
5.生物医学超声
近年来,超声诊断在医院中已普遍推广,许多疾病都可由超声诊断仪器(如A型扫描仪,B型超声断面显像仪,多普勒血流图等等)早期发现。超声多普勒成像系统可以对颅脑内血管及血流情况以彩色图形进行实时显示。甚至发展到对全身各部位的血流进行多普勒彩色图形显示。超声与X光、核磁共振成为医学三大诊断手段。
大功率超声还可使人体局部加热,并且超声波的振动可进入人体,因此,热效应、振动效应以及由强振动引起的空化效应均可以用于治疗疾病,促进药物的扩散。甚至用于外科手术,如眼科手术、骨骼修复,肿瘤消除等等。
6.声化学和声空化
近20年来,利用超声来加速化学反应,增加反应产率和引发新的化学反应等声化学研究有了突破性的结果,正在国际范围内引起声学和化学学术界的重视。声化学技术在生产上可望首先为合成塑料、洗涤剂、制药和化肥等化工工业方面带来重大变革,因此受到化工生产行业的极大关注。
近年来的研究表明,高功率超声在液体中产生的非线性现象引起声空化是声化学主要的物理过程。因为声空化是集中声场能量迅即释放的过程,在空化泡崩溃时,短时间内产生的高温、高压、强冲击波和射流,为一般条件下难以实现或不可能实现的化学反应提供了一种非常特殊的物理环境,开辟了新的化学反应通道。
7.语言处理
语言历来是信息传递的要素。研究语言的特征、识别和合成一直是声学工作者的重要任务,由此近20年来已形成了声学新分支——语言声学。语言声学主要研究语言特征谱,从而实现自动识别、人工合成和压缩编码等,对人民生活、国民经济和国防建设都是密切相关的。
8.水声信号处理
声波是唯一能在海水中有效地进行远距离信息传递的载体。蓝绿光在海水中衰减123dB/Km。100Hz超长电磁波在海水中衰减为345dB/Km,但100Hz声波在海水中的衰减则仅为0.0015dB/Km。声波能在水下传播很远距离,而光波和电磁波则在很短距离内就会被完全吸收。因此,所有的水下探测、通讯、导航、遥控等活动都离不开声学。但海水中声速低,高频声波在海水中的衰减增长迅速,海洋信道又属于不平整双界面随机不均匀介质信道,因而水声信号信息量小,传递过程中时变、空变及多途效应严重。要满足不同实际工作要求,需采用多种措施。应该说,水声技术是广泛领域的现代科学技术的高度结合。
9.环境声学
在本世纪中期,现代工业和交通飞速发展。伴随着出现大量的噪声问题,机器噪声(如纺织厂,机械厂,锯木厂等),交通噪声等等。噪声妨碍人的健康,影响人们的工作和生活,干扰精密仪器的运转。高强度噪声还会造成人们听力丧失,甚至损坏房屋建筑。因此在60年代前后,“噪声控制”作为一门独特的学科从建筑声学中分离出来,得到迅速发展。不少建筑声学家把研究方向转为研究噪声及其控制。包括噪声源的分析,噪声对人类的影响,噪声的治理等等。一般采取隔绝的方式,近年来则发展有源消噪和减振的方式,即人为地有目的地产生次级声振动信号去抵消原有噪声,从而达到消噪和除噪的目的。其特点是体积小,成本低,降噪效果好,特别适合于军事和国防方面的应用。
10.电声系统及其应用
近年来,由于高科技发展和人民生活水平的不断提高,对于电声系统提出了更高的要求。首先,由于通讯系统的飞速发展,作为通讯系统的关键元器件的传声器(话筒)和扬声器(喇叭),除音质好之外,对外形(如小型化)等也有特殊要求。此外,随着立体声技术的发展以及人们欣赏能力的提高,对扬声器和组合音响设备也有更高要求,特别是脉冲编码调制录音技术和数字音频唱片的出现,要求扬声器同时承受功率大、动态范围大、频响宽广平坦、失真小和瞬态响应良好等特性。